

Welcome to csharp-functional documentation

The csharp-functional repository [https://github.com/edumserrano/csharp-functional] started as a learning experience about functional programming concepts. The main trigger was a Pluralsight video from Vladimir Khorikov [http://enterprisecraftsmanship.com/] named Applying Functional Principles in C# [https://app.pluralsight.com/library/courses/csharp-applying-functional-principles/table-of-contents].

After watching the video I immediately tried to apply the concepts in one of my pet projects and I found that I wanted a bit more than the functionality described in the Pluralsight course. In the course the Result type that is described is capable of holding or not a value, so you have: Result or Result<T>. In both cases you have an error property which is of type string that you can chose to set to describe what went wrong. I felt that using a string to describe an error was not what I wanted in most cases. So all of this started because I wanted to create a Result monad which could have an error of any type. It turned out to be much more complex than I could have imagined…

I highly advise you to watch that Pluralsight course as well as to read Eric Lippert’s series of blog posts on monads [https://ericlippert.com/category/monads/].

This documentation aims to provide enough instructions to successfully use the NuGet packages as well as understanding the code in the repository. While reading it keep in mind that:

	Although it mentions monads, it’s outside of the scope to try to explain what a monad is.

	The more resources section contains links that will be helpful to understand what a monad is.

	Since my understanding of monads is limited it might very well be possible that I sometimes use the word incorrectly.

	All code examples are meant to illustrate the usage of the NuGet packages and are not meant to reflect real world code practices.

	Whenever I say an ok result/httpresult I mean a result/httpresult that has the IsSuccess property equal to true.

	Whenever I say a fail result/httpresult I mean a result/httpresult that has the IsFailure property equal to true.

Contents:

	About the repository
	Source Code

	Documentation

	Maybe monad
	Installing

	How To

	Result monad
	Installing

	Result: How To

	ResultWithError: How To

	Result<TValue>: How To

	Result<TValue,TError>: How To

	HttpResult monad
	Installing

	HttpResult monads: How To

	IHttpState: How To

	HttpResult monad is disposable

	Combine methods
	Combine methods for Result monads

	Combine methods for HttpResult monads

	Examples

	Extensions
	NuGet packages

	Installing

	Maybe extensions: examples

	Result and HttpResult extensions: examples

	Mapping from one monad type to another

	Putting it all together: Railway Oriented Programming

	More resources

About the repository

Source Code

There is only one solution in the csharp-functional repository [https://github.com/edumserrano/csharp-functional]:

	Source/CSharpFunctional/CSharpFunctional.sln [https://github.com/edumserrano/csharp-functional/tree/master/Source/CSharpFunctional]

Structure of the solution

	Description

	Type

	NuGet

	Location

	The Maybe monad

	Source

	MaybeMonad NuGet [https://github.com/edumserrano/csharp-functional]

	MaybeMonad [https://github.com/edumserrano/csharp-functional/tree/master/Source/CSharpFunctional/MaybeMonad]

	The Result monad

	Source

	ResultMonad NuGet [https://github.com/edumserrano/csharp-functional]

	ResultMonad [https://github.com/edumserrano/csharp-functional/tree/master/Source/CSharpFunctional/ResultMonad]

	The HttpResult monad

	Source

	HttpResultMonad NuGet [https://github.com/edumserrano/csharp-functional]

	HttpResultMonad [https://github.com/edumserrano/csharp-functional/tree/master/Source/CSharpFunctional/HttpResultMonad]

	The Result monad extensions

	Source

	ResultMonad.Extensions NuGet [https://github.com/edumserrano/csharp-functional]

	ResultMonad.Extensions [https://github.com/edumserrano/csharp-functional/tree/master/Source/CSharpFunctional/ResultMonad.Extensions]

	The HttpResult monad extensions

	Source

	HttpResultMonad.Extensions NuGet [https://github.com/edumserrano/csharp-functional]

	HttpResultMonad.Extensions [https://github.com/edumserrano/csharp-functional/tree/master/Source/CSharpFunctional/HttpResultMonad.Extensions]

	The Result monad extensions that transforms them into HttpResult monad

	Source

	ResultMonad.Extensions.HttpResultMonad NuGet [https://github.com/edumserrano/csharp-functional]

	ResultMonad.Extensions.HttpResultMonad [https://github.com/edumserrano/csharp-functional/tree/master/Source/CSharpFunctional/ResultMonad.Extensions.HttpResultMonad]

	The Maybe monad extensions that transforms them into Result monad

	Source

	MaybeMonad.Extensions.ResultMonad NuGet [https://github.com/edumserrano/csharp-functional]

	MaybeMonad.Extensions.ResultMonad [https://github.com/edumserrano/csharp-functional/tree/master/Source/CSharpFunctional/MaybeMonad.Extensions.ResultMonad]

	Simple application of HttpResult monad on a class by using it with System.Net.Http.HttpClient [https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient?view=netstandard-2.0>]

	Source

	HttpResultMonad.HttpResultOnHttpClient NuGet [https://github.com/edumserrano/csharp-functional]

	HttpResultMonad.HttpResultOnHttpClient [https://github.com/edumserrano/csharp-functional/tree/master/Source/CSharpFunctional/HttpResultMonad.HttpResultOnHttpClient]

	Tests for the Maybe monad

	Test

	N/A

	MaybeMonad.Tests [https://github.com/edumserrano/csharp-functional/tree/master/Tests/MaybeMonad.Tests]

	Tests for the Result monad

	Test

	N/A

	ResultMonad.Tests [https://github.com/edumserrano/csharp-functional/tree/master/Tests/ResultMonad.Tests]

	Tests for the HttpResult monad

	Test

	N/A

	HttpResultMonad.Tests [https://github.com/edumserrano/csharp-functional/tree/master/Tests/HttpResultMonad.Tests]

	Tests for the Result monad extensions

	Test

	N/A

	ResultMonad.Extensions.Tests [https://github.com/edumserrano/csharp-functional/tree/master/Tests/ResultMonad.Extensions.Tests]

	Tests for the HttpResult monad extensions

	Test

	N/A

	HttpResultMonad.Extensions.Tests [https://github.com/edumserrano/csharp-functional/tree/master/Tests/HttpResultMonad.Extensions.Tests]

	Tests for the Result monad extensions that transforms them into HttpResult monad

	Test

	N/A

	ResultMonad.Extensions.HttpResultMonad.Tests [https://github.com/edumserrano/csharp-functional/tree/master/Tests/ResultMonad.Extensions.HttpResultMonad.Tests]

	Tests for the Maybe monad extensions that transforms them into Result monad

	Test

	N/A

	MaybeMonad.Extensions.ResultMonad.Tests [https://github.com/edumserrano/csharp-functional/tree/master/Tests/MaybeMonad.Extensions.ResultMonad.Tests]

	Tests for the simple example of applying HttpResult monad on a class by using it with System.Net.Http.HttpClient [https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient?view=netstandard-2.0>]

	Test

	N/A

	HttpResultMonad.HttpResultOnHttpClient.Tests [https://github.com/edumserrano/csharp-functional/tree/master/Tests/HttpResultMonad.HttpResultOnHttpClient.Tests]

	Shared code between test projects

	Test Library

	N/A

	Tests.Shared [https://github.com/edumserrano/csharp-functional/tree/master/Tests/Tests.Shared]

Building the solution and running tests

This repository adheres to the F5 manifesto [http://www.khalidabuhakmeh.com/the-f5-manifesto-for-net-developers] so you should be able to clone, open the solution in Visual Studio and build/run tests.

Documentation

The documentation for the repository can be found at the Docs folder [https://github.com/edumserrano/csharp-functional/tree/master/Docs].

Read this [https://docs.readthedocs.io/en/latest/getting_started.html#in-restructuredtext] to understand how the documentation was created and how you can build it.

Building the docs

To build the docs you need:

	Python;

	Sphinx;

	Sphinx read the docs theme.

	Pylint (not required but recommended)

You can install Python from here [https://www.python.org/downloads/windows/] or if you have chocolatey [https://chocolatey.org/] you can do the following from PowerShell:

choco install python

Sphinx is a tool that makes it easy to create beautiful documentation. Assuming you have Python already, install Sphinx by executing the following on PowerShell:

pip install sphinx sphinx-autobuild

The read the docs theme is configured in the conf.py [https://github.com/edumserrano/csharp-functional/blob/master/Docs/source/conf.py] file. To get this theme execute the following on PowerShell:

pip install sphinx_rtd_theme

For more information about the read the docs theme see its repo [https://github.com/rtfd/sphinx_rtd_theme].

To install Pylint execute the following from PowerShell:

pip install pylint

Once you have setup your environment you can build the docs by running the make.bat [https://github.com/edumserrano/csharp-functional/blob/master/Docs/make.bat] file. You can also build the docs from Visual Studio Code as explained in the next section.

Note

These build instructions are focused for Windows users. If you are using a different OS then the instructions can’t be taken word by word but the same requirements apply. Furthermore there is a makefile [https://github.com/edumserrano/csharp-functional/blob/master/Docs/Makefile] available for non Windows users.

 Maybe monad

Maybe monad

The Maybe monad encapsulates an optional value. An instance of Maybe either has a value of the encapsulated type or it doesn’t in which case it is a Maybe<T>.Nothing.
This type is meant to be used in cases where your method might or might not return a value. Consider the following:

public class UserRepository
{
 public User GetById(int id)
 {
 //some implementation
 }
}

User user = _repository.GetById(id);

What happens if the user does not exist? Often a null value is returned. There are at least 2 problems with this:

	The method GetById is not honest because it says it will return a User but in truth it returns a User instance or null.

	The compiler has no way to assist you detecting that the variable user can be null. You are responsible for making sure your code always handles null values properly which might be trivial if you consider just this example but on a large code base it is not.

Applying the Maybe monad to the above example would result in the following:

public class UserRepository
{
 public Maybe<User> GetById(int id)
 {
 //some implementation
 }
}

Maybe<User> user = _repository.GetById(id);

	This fixes both of the previous issues because now:

	
	The method is honest and anyone using it understands that GetById might or might not return an instance of User.

	The variable user is never null.

Installing

The Maybe monad NuGet package can be found at MaybeMonad NuGet [https://github.com/edumserrano/csharp-functional].
Installing is performed via NuGet:

PM> Install-Package MaybeMonad

How To

To create a Maybe instance without value do:

var emptyMaybe = Maybe<int>.Nothing;

To create a Maybe instance with value do:

var maybeWithValue = Maybe.From("some text");

Attempting to create a Maybe instance with a null value results in an empty Maybe:

var maybeWithNullValue = Maybe.From<string>(null);
var isEqual = maybeWithNullValue.Equals(Maybe<string>.Nothing); //evaluates to true

To check if a Maybe instance has or does not have value do:

var emptyMaybe = Maybe<int>.Nothing;
var hasValue = emptyMaybe.HasValue; //evaluates to false
var hasNoValue = emptyMaybe.HasNoValue; //evaluates to true

Accessing the value of an empty Maybe throws an InvalidOperationException exception:

var emptyMaybe = Maybe<int>.Nothing;
var value = emptyMaybe.Value; // throws exception

The Maybe type as an implicit converter for the type that is encapsulated. This means that you can do:

Maybe<int> maybeInt = 2; //the implicit converter transforms the int 2 into Maybe<int> with a value of 2

Or more useful:

public class UserRepository
{
 public Maybe<User> GetById(int id)
 {
 User user;
 //db call to query for the user

 if(/*the user was not found*/)
 {
 return null; //the implicit converter means that what is returned is Maybe<User>.Nothing;
 }

 //the user was found, populate the user variable;
 return user; //the implicit converter means that what is returned is Maybe.From(user);
 }
}

 Result monad

Result monad

The essence of the Result monad is to augment the outcome of an operation with a success status.
There are four variations of the Result monad:

	Result : simply augments the outcome of an operation with a success status.

	ResultWithError<TError> : besides the success status it includes an Error property which must have a value if the success status is false.

	Result<TValue> : besides the success status it includes a Value property which must have a value if the success status is true.

	Result<TValue,TError> : besides the success status it includes a Value property which must have a value if the success status is true and an Error property which must have a value if the success status is false.

All variations of the Result monad contain an IsSuccess and it’s inverse IsFailure property that indicate if the operation was successful or not.

Installing

The Result monad NuGet package can be found at ResultMonad NuGet [https://github.com/edumserrano/csharp-functional].
Installing is performed via NuGet:

PM> Install-Package ResultMonad

Result: How To

The Result type is meant to be used when the method does not return any value and if it fails you do not care about the details of the failure.

To create a Result instance do:

var okResult = Result.Ok();
var failResult = Result.Fail();

ResultWithError: How To

The ResultWithError<TError> type is meant to be used when the method does not return any value but if it fails you want information regarding the failure.

To create a ResultWithError instance do:

var okResult = ResultWithError.Ok<string>();
var failResult = ResultWithError.Fail("some error info");

To access the error do:

var failResult = ResultWithError.Fail("some error info");
var error = failResult.Error; // evaluates to "some error info"

Accessing the Error property of an ok ResultWithError throws InvalidOperationException exception:

var okResult = ResultWithError.Ok<string>();
var error = failResult.Error; //throws exception

You can also use the From method to create a ResultWithError. It accepts a predicate function and an error. If the predicate evaluates to true the method returns an ok ResultWithError, if the predicate evaluates to false it returns a fail ResultWithError containing the error:

var okResult = ResultWithError.From(()=>true, "some error info"); // creates an ok ResultWithError<string>
var failResult = ResultWithError.From(()=>false, "some error info"); // creates a fail ResultWithError<string> with "some error info" as the error

Result<TValue>: How To

The Result<TValue> type is meant to be used when the method does returns a value but if it fails you do not want information regarding the failure.

To create a Result<TValue> instance do:

var okResult = Result.Ok("some value");
var failResult = Result.Fail<string>();

To access the value do:

var okResult = Result.Ok("some value");
var value = okResult.Value; // evaluates to "some value"

Accessing the Value property of a fail Result<TValue> throws InvalidOperationException exception:

var okResult = Result.Ok<string>();
var error = okResult.Error; //throws exception

You can also use the From method to create a Result<TValue>. It accepts a predicate function and a value. If the predicate evaluates to true the method returns an ok Result<TValue> containing the value, if the predicate evaluates to false it returns a fail Result<TValue>:

var okResult = Result.From(()=>true, "some value"); // creates an ok Result<string> with "some value" as the value
var failResult = Result.From(()=>false, "some value"); // creates a fail Result<string>

Result<TValue,TError>: How To

The Result<TValue,TError> type is meant to be used when the method does returns a value and if in addition, if it fails, it will return an error.

To create a Result<TValue,TError> instance do:

var okResult = Result.Ok<string,int>("some value");
var failResult = Result.Fail<string,int>(0);

To access the value do:

var okResult = Result.Ok<string,int>("some value");
var value = okResult.Value; // evaluates to "some value"

To access the error do:

var failResult = Result.Fail<string,int>(0);
var error = failResult.Error; // evaluates to 0

Accessing the Value property of a fail Result<TValue,TError> throws InvalidOperationException exception:

var failResult = Result.Fail<string,int>(0);
var value = failResult.Value; //throws exception

Accessing the Error property of an ok Result<TValue,TError> throws InvalidOperationException exception:

var okResult = Result.Ok<string,int>("some value");
var error = okResult.Error; //throws exception

You can also use the From method to create a Result<TValue,TError>. It accepts a predicate function, a value and an error. If the predicate evaluates to true the method returns an ok Result<TValue,TError> containing the value, if the predicate evaluates to false it returns a fail Result<TValue,TError> containing the error:

var okResult = Result.From<string,int>(()=>true, "some value",0); // creates an ok Result<string,int> with "some value" as the value
var failResult = Result.From<string,int>(()=>false, "some value",0); // creates a fail Result<string,int> with 0 as the error

 HttpResult monad

HttpResult monad

Please read about the result monad first because the HttpResult monad is essentially the same with an added state property of type IHttpState.
As the result monad, there are four variations of the HttpResult monad:

	HttpResult

	HttpResultWithError<TError>

	HttpResult<TValue>

	HttpResult<TValue,TError>

All variations of the HttpResult monad contain an IsSuccess and it’s inverse IsFailure property that indicate if the operation was successful or not; as well as an HttpState property that represents the http operation that was performed.

From a developers perspective there is one big difference between the HttpResult monad and the Result monad: whilst the Result monad can start to be used without any extra coding effort, the HttpResult monad requires a bit more coding effort. Please keep reading to understand how to take advantage of the HttpResult monad.

Installing

The HttpResult monad NuGet package can be found at HttpResultMonad NuGet [https://github.com/edumserrano/csharp-functional].
Installing is performed via NuGet:

PM> Install-Package HttpResultMonad

HttpResult monads: How To

Please read the how-to for each variation of the Result monad to understand how to use the HttpResult monads.
The only difference is that the HttpResult also requires an HttpState in its Ok and Fail methods. See the HttpState to understand how to create an IHttpState instance.

To use this you should create a wrapper on the methods that do your http communication. For instance, if you are using the System.Net.Http.HttpClient class you could do the following:

private HttpClient _httpClient = new HttpClient();

public async Task<HttpResult> SendAsync(
 HttpRequestMessage request,
 CancellationToken cancellationToken = default(CancellationToken))
{
 var response = await _httpClient
 .SendAsync(request, cancellationToken)
 .ConfigureAwait(false);

 IHttpState httpState = new HttpClientState(response);
 return response.IsSuccessStatusCode
 ? HttpResult.Ok(httpState)
 : HttpResult.Fail(httpState);
}

The above example shows the idea for using the HttpResult class based on System.Net.Http.HttpClient [https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient?view=netstandard-2.0>]. This code can be found at HttpResultClient class [https://github.com/edumserrano/csharp-functional/blob/master/Source/CSharpFunctional/HttpResultMonad.HttpResultOnHttpClient/HttpResultClient.cs] and you can use it by installing HttpResultMonad.HttpResultOnHttpClient NuGet [https://github.com/edumserrano/csharp-functional].

Obviously you can use other implementations but what is important is that you are responsible for capturing the IHttpState as well as deciding whether you should return an ok or a fail HttpResult. This was just a very simple and generic example. Let’s say that you knew that you only deal with json responses and you want to have type safety. Then you could implement something like:

public async Task<HttpResult<T>> SendAsync<T>(
 HttpRequestMessage request,
 CancellationToken cancellationToken = default(CancellationToken)) where T : class
{
 var response = await _httpClient
 .SendAsync(request, cancellationToken)
 .ConfigureAwait(false);

 var jsonBody = await response.Content.ReadAsStringAsync();
 var deserializedObj = /*deserialize the string jsonBody into an instance of type T*/

 IHttpState httpState = new HttpClientState(response);
 return response.IsSuccessStatusCode
 ? HttpResult.Ok<T>(deserializedObj,httpState)
 : HttpResult.Fail<T>(httpState);
}

It is up to you to chose the best integration of the HttpResult monad with the class of your choosing that does the http communication in order to meat your requirements.

IHttpState: How To

The IHttpState represents an http operation. See here [https://github.com/edumserrano/csharp-functional/blob/master/Source/CSharpFunctional/HttpResultMonad/State/IHttpState.cs] for the specification of this interface.

As explained in the previous section, to use HttpResult you will have to wrap the methods that you use do the http communication with it. When doing that you will also decide whether or not to capture the http state. If you do not pass any http state into the OK and Fail methods of the HttpResult then the http state will always be an empty http state [https://github.com/edumserrano/csharp-functional/blob/master/Source/CSharpFunctional/HttpResultMonad/State/EmptyHttpState.cs].

See the HttpClientState [https://github.com/edumserrano/csharp-functional/blob/master/Source/CSharpFunctional/HttpResultMonad.HttpResultOnHttpClient/HttpClientState.cs] class for an implementation of the IHttpState that is used with an HttpResult that uses the System.Net.Http.HttpClient. This HttpClientState implements the IHttpState interface based on System.Net.Http.HttpResponseMessage. Note that the Dispose method is responsible for disposing the System.Net.Http.HttpResponseMessage and System.Net.Http.HttpRequestMessage. Usually you do this by applying a using statement such as:

private HttpClient _httpClient = new HttpClient();

using(var httpResponse = await _httpClient.GetAsync("https://github.com"))
{
 //do something with the httpResponse
}

However in the HttpResultClient class [https://github.com/edumserrano/csharp-functional/blob/master/Source/CSharpFunctional/HttpResultMonad.HttpResultOnHttpClient/HttpResultClient.cs] the HttpResponse is not disposed because the implementation of the IHttpState interface by the HttpClientState [https://github.com/edumserrano/csharp-functional/blob/master/Source/CSharpFunctional/HttpResultMonad.HttpResultOnHttpClient/HttpClientState.cs] class does not immediately retrieve everything it needs to from it, namely the body. This was an implementation choice. I could have decided that I was happy with loading upfront the whole request and response bodies into the HttpResultClient class. If I did that than I could dispose of the HttpResponseMessage on the HttpResultClient class and the implementation of the Dispose method in the HttpClientState could be empty.

It is up to you to chose the best implementation for IHttpState that meats your requirements.

If you need to create an empty state do:

using HttpResultMonad.State;

var emptyState = HttpState.Empty;

To check if an HttpState is empty do:

var emptyState = HttpState.Empty;
var isEmptyState = emptyState.Equals(HttpState.Empty); //evaluates to true

HttpResult monad is disposable

The Dispose method of the HttpResult just calls the Dispose method on its HttpState property which is of type IHttpState. This means two things:

	You should always dispose the HttpResult instances once you don’t need them anymore.

	When implementing the IHttpState you should take care of releasing any disposable resources.

 Combine methods

Combine methods

The Combine methods are present for the Result and HttpResult monads. They allow you to evaluate a group of results and determine if they are all successful or not.

Combine methods for Result monads

the available combine methods for the Result monads are:

public static Result Combine(params Result[] results);

public static Result Combine<T>(params Result<T>[] results);

public static ResultWithError<TError> Combine<TError>(params ResultWithError<TError>[] resultsWithError);

public static ResultWithError<TError> Combine<TValue, TError>(params Result<TValue, TError>[] results);

The first method combines an array of Result instances and returns an ok Result if all results are ok, otherwise it returns a failed Result;

The second method combines an array of Result<T> instances and returns an ok Result if all results are ok, otherwise it returns a failed Result. Note that it does not return a Result<T>. That’s because even if in the case where at least one Result<T> is a fail result it could return the first failure, for the scenario where all are ok Result<T> instances it does not seem right to randomly chose one of the ok results.

The third method combines an array of ResultWithError<TError> instances and returns an ok ResultWithError<TError> if all results are ok, otherwise it returns the first failed ResultWithError<TError> in the array. In contrast with the previous method it does not “reduce” the ResultWithError<TError> to a Result because an ok ResultWithError does not have a value for Error. In other words all ok instances of ResultWithError<TError> with the same type of TError are equal.

The fourth method combines an array of Result<TValue, TError> instances and returns an ok ResultWithError<TError> if all results are ok, otherwise it returns a failed ResultWithError<TError> where the error is from the first fail Result<TValue, TError> in the array. Note that it does not return a Result<TValue, TError>. That’s because even if in the case where at least one Result<T> is a fail result it could return the first failure, for the scenario where all are ok Result<TValue, TError>[] instances it does not seem right to randomly chose one of the ok results.

Combine methods for HttpResult monads

The available combine methods for the HttpResult monads are:

public static HttpResult Combine(params HttpResult[] results);

public static HttpResult Combine<T>(params HttpResult<T>[] results);

public static HttpResultWithError<TError> Combine<TError>(params HttpResultWithError<TError>[] resultsWithError);

public static HttpResultWithError<TError> Combine<TValue, TError>(params HttpResult<TValue, TError>[] results);

The first method combines an array of HttpResult instances and returns an ok HttpResult if all results are ok, otherwise it returns the first failed HttpResult.
In the case where all HttpResult instances are ok the returned ok HttpResult instance has an empty HttpState.

The second method combines an array of HttpResult<T> instances and returns an ok HttpResult if all results are ok, otherwise it returns a failed HttpResult. Note that it does not return a HttpResult<T>. That’s because even if in the case where at least one HttpResult<T> is a fail result it could return the first failure, for the scenario where all are ok HttpResult<T> instances it does not seem right to randomly chose one of the ok results.
In the case where all HttpResult instances are ok the returned ok HttpResult instance has an empty HttpState. Otherwise the failed HttpResult will contain the HttpState of the first fail HttpResult<T> in the array.

The third method combines an array of ResultWithError<TError> instances and returns an ok ResultWithError<TError> if all results are ok, otherwise it returns the first failed ResultWithError<TError> in the array. In contrast with the previous method it does not “reduce” the ResultWithError<TError> to a Result because an ok ResultWithError does not have a value for Error. In other words all ok instances of ResultWithError<TError> with the same type of TError are equal.
In the case where all HttpResult instances are ok the returned ok HttpResult instance has an empty HttpState.

The fourth method combines an array of HttpResult<TValue, TError> instances and returns an ok HttpResultWithError<TError> if all results are ok, otherwise it returns a failed HttpResultWithError<TError> where the error is from the first fail HttpResult<TValue, TError> in the array. Note that it does not return a HttpResult<TValue, TError>. That’s because even if in the case where at least one HttpResult<T> is a fail result it could return the first failure, for the scenario where all are ok HttpResult<TValue, TError>[] instances it does not seem right to randomly chose one of the ok results.
In the case where all HttpResult instances are ok the returned ok HttpResult instance has an empty HttpState.

Examples

Here are a some examples of using the Combine methods on the Result monads. The usage of Combine methods for HttpResult monads is similar.

Combining a set of Result instances:

var resultsLists = new List<Result>
{
 Result.Ok(),
 Result.Fail(),
 Result.Ok()
};

Result combinedResult = Result.Combine(resultsLists.ToArray()); //at least one Result is fail so the combinedResult is a fail Result

Combining a set of Result<TValue> instances:

var resultsLists = new List<Result<string>>
{
 Result.Ok("value1"),
 Result.Ok("value2"),
 Result.Ok("value3")
};

Result combinedResult = Result.Combine(resultsLists.ToArray());
/*
* all Result<string> are ok so the combinedResult is an ok Result
* it is not a Result<string> because it doesn't seem right to randomly chose one of the values.
*/

Combining a set of Result<TValue,TError> instances:

var resultsLists = new List<Result<int, string>>
 {
 Result.Ok<int,string>(1),
 Result.Fail<int, string>("first error");
 Result.Ok<int,string>(2),
 Result.Fail<int,string>("second error")
 };

 ResultWithError<string> combinedResult = Result.Combine(resultsLists.ToArray());
 /*
 * at least one Result<int, string> is fail so the combinedResult is a fail ResultWithError<string>
 * combinedResult.Error evaluates to "first error"
 */

 Extensions

Extensions

The extension methods available don’t cover every possible scenario. I encourage you to take a look at the code in the csharp-functional repository [https://github.com/edumserrano/csharp-functional] and create your own.

One thing to note is that the extensions can perform transformations on the types being extended. What I mean is that an extension can be applied to a Result<T> and return a Result<K> or be applied to a Maybe<T> and return a Result<T>.

I think of these transformations in two kinds:

	Generic type transformation: for instance from Result<T> to Result<K>. T became K.

	Monad transformation: for instance from Maybe<T> to Result<T>

For generic type transformations you will need to provide a function for each type you want to transform. For instance an extension like:

public static Result<KValue> OnSuccessToResultWithValue<TValue, KValue>(
 this Result<TValue> result,
 Func<TValue, KValue> onSuccessFunc)
{
 if (result.IsFailure)
 {
 return Result.Fail<KValue>();
 }

 var newValue = onSuccessFunc(result.Value);
 return Result.Ok<KValue>(newValue);
}

Mutates KValue to TValue by applying the onSuccessFunc to the instance of type TValue.

For monad transformations you might not need any extra function if it’s implicitly known how to create one monad from the other:

public static Result<T> ToResultWithValue<T>(this Maybe<T> maybe)
{
 /*the transformation from Maybe<T> to Result<T> is implicit, no function is required*/
 return maybe.HasNoValue
 ? Result.Fail<T>()
 : Result.Ok(maybe.Value);
}

Since I know how to create a Result<T> from a Maybe<T> then no function is required. However if this transformation was not implicit then a function would have to be passed in to be applied and transform from one monad to another.

In the NuGet packages there are extensions that mutate from Maybe monad to Result, Result<T>, Result<TValue,TError>; as well as many others that mutate from a variation of Result monad to a variation of HttpResult monad like from Result<TValue,TError> to HttpResult<KValue,Terror>.

Note

The underlying statement that derives from this introduction is that as a rule of thumb you should perform transformations that require only one function because of code readability:

	If you’re doing a generic type transformation and at the same time a monad transformation then the monad transformation should be implicit so that you will only require the function to mutate the generic type.

	There is no problem in breaking this advice. You can even mutate more than one generic type at a time and go from Monad<A,B,C> to Monad<X,Y,Z> but at the expense of having 3 mutating functions: A->X, B->Y and C->Z.

	The more functions that need to be passed in to the extension method the worst the readability of the code becomes. This is subject to personal opinion but I think that due to the C# syntax it becomes harder to read the code if you start to have many functions passed in as arguments on chained method calls.

 More resources

More resources

	Pluralsight course by Vladimir Khorikov: Applying Functional Principles in C# <https://app.pluralsight.com/library/courses/csharp-applying-functional-principles/table-of-contents>`_ .

	Vladimir Khorikov’s repository related with the Pluralsight course mentioned above: https://github.com/vkhorikov/CSharpFunctionalExtensions.

	Eric Lippert’s series of articles on monads: https://ericlippert.com/category/monads. It’s composed of thirteen articles and each one helped a lot to understand monads a bit better.

	Wes Dyer article on monads: https://blogs.msdn.microsoft.com/wesdyer/2008/01/10/the-marvels-of-monads. This article is mentioned on Monads, part two <https://ericlippert.com/2013/02/25/monads-part-two/>, the second article in the series and it contains one of the most succinct and easier to grasp definitions about a monad:

	“Another way to look at these generic types (monads) is that they are “amplifiers”. An “amplifier” is something that increases the representational power of their “underlying” type.”

	Another good and not mathematical definition of monad can be found at: http://www.introtorx.com/content/v1.0.10621.0/10_LeavingTheMonad.html. It says:

	“For us, a monad is effectively a programming structure that represents computations. Generally a monadic structure allows you to chain together operators to produce a pipeline, just as we do with our extension methods. Monads are a kind of abstract data type constructor that encapsulate program logic instead of data in the domain model.”

	Scott Wlaschin’s article on Railway Oriented Programming: https://fsharpforfunandprofit.com/rop. As well as the links at the bottom of the article about monads in general.

 Index

Index

 <no title>

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to csharp-functional documentation

 		
 About the repository

 		
 Source Code

 		
 Structure of the solution

 		
 Building the solution and running tests

 		
 Documentation

 		
 Building the docs

 		
 Editing the docs with Visual Studio Code

 		
 Maybe monad

 		
 Installing

 		
 How To

 		
 Result monad

 		
 Installing

 		
 Result: How To

 		
 ResultWithError: How To

 		
 Result<TValue>: How To

 		
 Result<TValue,TError>: How To

 		
 HttpResult monad

 		
 Installing

 		
 HttpResult monads: How To

 		
 IHttpState: How To

 		
 HttpResult monad is disposable

 		
 Combine methods

 		
 Combine methods for Result monads

 		
 Combine methods for HttpResult monads

 		
 Examples

 		
 Extensions

 		
 NuGet packages

 		
 Installing

 		
 Maybe extensions: examples

 		
 Result and Http